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The article explains an algorithm for determining the thermophysical characteristics of dispersed media with 
phase transitions based on the method of solving inverse problems of heat conduction. 

The problems of constructing and operating various civil-engineering constructions in permafrost regions require 
investigations for determining the thermophysical characteristics of alternately freezing and thawing soils. 

The finding of these values can be formulated in the form of the inverse problem of heat conduction, which has 
aroused great interest in recent years (see, e.g., [ 1-3]). The authors of [1, 2] and of the works quoted by them examine 
problems of reconstructing unknown boundary conditions; Cannon and Duchateau [3] examine the problem of determining 
the thermophysical characteristics c, ?t when they are correlated by X(T) = kc(T), where k = const > 0. 

We examined the numerical determination of c, X for problems with phase transitions and without them. For the 
sake of simplicity, we explain the problem of freezing in the absence of free moisture, although the method is also being 
extended to more general problems of freezing in the temperature spectrum. 

The heat flux q(r) is supplied to the cylindrical surface of a specimen with the initial temperature T o and moisture 
coo" The change in the temperature field is described by the equation 

OT 1 0 (r)~(T) 30@ ) (1) 
c(r) p O~ r Or 

where 

c(r) = Csk + q% + (Cw--Ci)o~(T) + L O_~(T) 
dT 

The function co(T) at the point of start of freezing is equal to the bound moisture coo" With the lowering of the tempera- 
ture, co(T) decreases continuously, and beginning at some value T = T 1 , it remains constant if the specimen contains strongly 
bound moisture co(T) = cosb" For most of the typical dispersed soils [4-6] (clay, loam, sand) the dependence of the amount 
of nonfrozen water on the temperature in the range T~ ~ T ~< 0 can be approximated by a hyperbolic arc. Thus, the 
function a~(T) can be represented in the form 

r T ~ Tt, 

~o(T): : : T, << T<< 0, 
I IT + T.,] t' 

I r > O .  
i (OG ~ 1 

Corresponding to this, the volume heat capacity for the three mentioned zones has the form 

Csk -- ci coo q- (Cw-- ci) (Osb -: of, T~Tt,  

c (T) --: csk q- el% @ (Cw--ci)co (T) -b" L &o(T_) , TI~T_<~O, 
OT 

csk+ Cw% :- Crn, T ~;~ O, 

(2) 

(3) 

X(T) is the thermal conductivity whose temperature dependence can be expressed in the form [6] 
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(T) = 

Lf, T ~ Ti, 

~ f  __  ( ~ f  _ km)(O ( T )  - -  (Osb , 

(0 o - -  O) sb 

x m, T ~ 0 .  

T, ~ T ~ O, (4) 

Joined to Eq. (1) are the initial and boundary conditions: 

T(r,  O)::To, O < . ~ r ~ R ,  (5) 

~OT__=O, r = 0 ,  0 ~ 0 ,  (6) 
Or 

L O T  = q ( r ) ,  ..... r = R ,  0 . . ~ 0 . " t  " /  (7) 
Or 

In addition to conditions (5)-(7), the temperatures at the center and on the surface, U, (r), U 2 (r), respectively, are measured. 
One of the possible methods of solving such problems is treating them in the form of problems of opt imum control, ie . ,  
select the control z = (c, X) from the condition of certain agreement of  the measured temperatures U l(r), U s (r) with the 
calculated temperatures corresponding to the given controls. These conditions are usually formulated in the form of a 
problem of minimizing some functional 

O 
I (z) = S {~' [T (0, r, z) - -  U, (z)]z + [~ IT (R, r, z) - -  U,, (-c)l ~-} d r ,  (8) 

0 

where/31 (r),/3 2 (r) are specified positive functions characterizing the extent of  confidence of the supplementary information. 

Let us examine the difference analog of the inverse problem. On the sections 0 ~ r ~ R, 0 ~ ~ ~ O we introduce 
grids (for the sake of simplicity of the presentation they are uniform) with the nodes r i = ih, i = 0, 1 . . . . .  N, r j  -: j a r ,  
] = 0 ,  1 . . . . .  n, h = ,R /N,  Ax = O/n. 

The difference analogs of  Eqs. (1), (5)-(7), constructed by the balance method, are the equations 

T H ~ T i l _  t l 
cijp A t  -- rih~ [~i+o.5il'i+o.5 (Ti+l] - -  T~j) --~,i_o.5]ri_o. 5 ( T i t - -  Ti_tj)], (9) 

i = t ,  2 . . . . .  N - - l ,  ]--=-1, 2 . . . . .  n, 

Toj--To~_, 4)~o.5i (T,j Toj), ] I, 2. ., n, 
C o 1  p : - -  _ _  .--._ . �9 . 

Ar h z 

8R 
CNi9 TNi--TNi--IAr -- (4R4(2R--h)-- h) h a ~,N--O.5](TNi - - T N - I i ) +  (4R__h)  h qj, 1 :  1, 2 . n ,  

(lO) 

(11) 

Tio= To ,  i = 0 ,  1 . . . . .  N. (12) 

We replace the difference problem (9)-(12) for finding the grid functions Cij, )ki+O.5j by the external problem of the minimum 
of the functional 

I = ~ [[~iJ (Toi - -  Uli) z + ~ j  (TNi - -  U2j) 2] AT. (13) 
i=l  

From the expression of the coefficients of  (2), (3), (4) follows that for finding them it is necessary to find c~, kf, 
X m (the parameter b is assumed to be unknown), and also r and the points T~, T2. It  is difficult to determine all these 

magnitudes simultaneously. We examined the following sequence of f'mding the unknowns: from the experimental thermo- 
gram the regions of  quasi-steady-state regime in frozen and thawed zones are selected, and in each region the unknowns 
cr, Xf, c m , X m are determined. Then, with the aid of (3), Csk and r are calculated, and at the last stage the parameter a 

and the values of  T~, T2. 

The values cf, Xf, cra, X m, a are determined by minimizing the functional (13); the components of  its gradient, 

calculated by the method of [7], have the form 

OI = ~ ~ ,  T~j- -T~j_ ,  , (14) 
Oc - -  --" Pr Ar ]=1 i = 0  
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Ol 

Oa 

c = c f  for T u ~ T I ,  c = c  mfor T u f T 2  , 

Ol ~ - ~ { , N ] ( T N I - - T N - 1 / )  

i=1 

2rN--O,~ 
(rx - -  0.25h) h 2 

N - - I  4 ~ *i__L 
- -  *oJ ( T u - -  To j  h-- T - -  rih2 [r~-+0.5 / ( T i + u -  

- -  Tu) ~ ri_0.: (Tij - -  T , j ) I }  , 

)~=~,f for Ti j .~<T; ,  )~=~,rn for T i I ~ T ' ~  , 

i=l 

O, T u<Ta, T u>O, 

n 

Z {I~Ni(TNi- -TN_I i )  2aN--O, si rN--05 
�9 (r N -- 0.25h) h 2 

N - - I  

- -  %iao.ai ( T u  - -  T o j  X 

4 Z '+~__.l_J [r., . ( T . j - -  TiJ -- X hZ rih2 ~TO.o ai-ko.si 
i=l 

N 
Tu -- Tu_ ~ 

- -  ri_o. 5 ai_o.~j (Tij  - -  r~_ij)] + 99u A'r 
i = O  

x I r ,~+r , . . I  ~ ~- I r . + r ~ l  ~+~ , r , ~ < r , j ~ < 0 ,  

x 

(15) 

(16) 

where a u =  s  1 TI ~ T , ,  T ~ > 0  are selected from the experimental therrnogram; ~ij is the 
% - - % b  IZ,j § T..I ~ ; 

solution of the conjugated system. 

After  having determined the gradients of  the functional (13), we can use various gradient-type iteration methods 
for its minimization. For  finding the unknown z, an iteration procedure constructed according to the method of  projecting 
gradients was used: 

z ~+1 = P~ (z ~ - -  c%[' (z~)) . (17) 

The iteration process of  finding the parameters a, T 1 , T 2 is organized in the following way. We know a s , s >1 0. 

Then ~ ,  ~ are determined from the following equalities ensuing from (2): 

Then with the aid of  the solutions of  the initial and conjugate boundary problems by formula (16), taking the found 
values of  ~ ,  "P2 into account, we calculate the gradient aI/~a,  and from (17) we find the constant a s+l . I f  we replace 

s in (18) by s + 1, we obtain T] § x, .p2§ 1 Then we turn to finding s + 2 of  the approximation etc. 

To check the effectiveness of  the algorithm, calculations were carried out  to solve a model  problem with the follow- 
ing initial data: 

T (r, *) = ao(x) + al(x) r z § a~r ~, ( I9)  

q (~) = qo + q{c, (20) 

where ao(x) = 16~z(z z-~ 3~ + I)/c292; ai(~) = 16~,(2~ + 3)/cp; a~ = 2, q0 = 82~§ 96LZ/cp; ql = 649~Z/cP, p = 15; 
z = (c,)~); c = 0.5; ~, = I. The problem was solved with accurate values of  the supplementary information 

Ui(T~) -- T(O, Ti), U~.(xJ = T ( R ,  Tj) (21) 
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TABLE 1. Reconstruction of  the Thermophysical Characteristics in the 
Model Problem 

0 
8 

24 
56 
96 

__ ~ ~ b  ations 
c s I s 

0,3 1.6 
0, 4963 1,5204 16,56 
0,505 1,2657 5,68 
0, 5074 1,1608 2,39 
0,5088 1,1170 1,38 

With pert~bations 
c s [ ~s 

0,3 1,6 
0,5165 1,5 
0,5088 1,2118 
0,5132 1,0778 
0,5177 0,997 

19,23 
6,88 
2,9 
1,85 

TABLE 2. Reconstruction of  the Thermophysical Characteristics and of  
the Amount  of  Nonfrozen Water by Formulas (I), (II), (III) and by the 
Traditional Method (IV 

e.sk, X f, X m, 
Formula kl / kg �9 deg W/kg �9 deg W/m �9 deg " 

(I) 
(1I) 
(IIl) 
(IV) 

1,18 
1,18 
1,18 
1,015 

1,78 
1,78 
1,78 
1,80 

1,36 
1,36 
1,36 
1,34 

2,66 
3,00 
4,01 
4,40 

0,69 
0.45 
0,625 
0. 

and with some perturbations specified by the formulas 

Us (e, "~ j) = T (e, "U) -k 0.01bisin(b~xj)T(e, "c j), (22) 

w h e r e e  = 0 ,  R i b  1 = 7 ; b  2 = 2 ; a =  1 ,2 .  

The results of  the numerical solution of  the problem in question, presented in Table 1, show that  the suggested 
algorithm is satisfactorily effective. 

This method was used in the investigation of  the thermophysical  characteristics and amount of  nonfrozen water in 
alternately freezing and thawing dispersed materials. 

We examined the following relations concerning the amount  of  nonfrozen water: 

a T ~ T . , ,  
!T[~ ' 

o~ (T) = (I) 
%, T ~ T2, 

to(T) = IT + T._,I a ' 

%, T ~ 0 ,  

T ~ O ,  
(II) 

r T ~ T I ,  

a 
o~(T)= [ I T + T " I  b , T t < ~ T ~ O ,  

t %, T ~ 0 .  

(III) 

The coefficients obtained as a result of  the numerical solution were compared with the coefficients obtained by the 
traditional method (Table 2). 

NOTATION 

r, space coordinate;  r, time; T, temperature of  the specimen; To, initial temperature; c i, Cw, Csk, specific heat of  ice, 
water, and of  the organic-mineral skeleton, respectively; c e, c m , Xf, X m , specific heat and thermal conductivity in the frozen 

and melted zones, respectively; c, effective heat capacity; X, thermal conductivity;  P, density; co o, con, bound and strongly 
bound moisture, respectively; co(T), amount  of  nonfrozen water; R, radius of  the cylinder; q(r), heat flux; I, functional; 
Ul(r), U2(r), measured temperatures of  the specimen at the points r = 0 and r = R, respectively, at the instant r; ~1, /~2' 

degree of  confidence of  the supplementary information;O, final instant of  time; a, b, k, a s, positive constants; L, specific 
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heat of melting; N, number of grid nodes over space; n, number of grid nodes over time; h, grid step over space; z~r, 
grid step over time; ~, solution of the conjugate system; s, number of iteration. 
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INERTIA OF MEASUREMENTS WITH "AUXILIARY-WALL" 

TYPE HEAT METERS 

G. N. Dul'nev, N. V. Pilipenko, and V. A. Kuz'min UDC 536.6 

The article examines the problem of thermal inertia on the basis of an "auxiliary-wall" type heat meter. It 
demonstrates the boundaries of applicability of the approximate relationship for calculating non-steady-state 
heat fluxes. 

Heat meters of the "auxiliary wall" type are widely used for measuring heat fluxes, and schematically they are often 
represented in the form of a plate attached to a semibounded body. It  was shown in [ 1 ] that for measuring non-steady- 
state heat fluxes with such heat meters, it is necessary to know the temperature gradient At(r) on the sensor with known 

thickness 6, and also the criterion • = ---=" a~, characterizing the thermophysical properties of the heat meter and the 
2t F a 2  

half-space. The same article also presented the theoretical relationships for determining the flux q&) in some special cases 
(• 0, 1, oo). For determining a variable flux, it is necessary in the general case (with arbitrary values of • to use the 
relationship (I) whose derivation is presented in Appendix 1: 

q' ( r ) -  k~ { 1 + 
I T r a i t  

q (~) = q' (x) -k q" (T); 

n ~ l  

(1) 

(2) 

0 n ~ l  

(3) 

• . , F a ~ -  A - -  6_ . 
zi l / 
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